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A plane mixed boundary-value problem of the linear theory of inertialess two-phase consolidation is considered [1]. A 
strip lying on a smooth undeformable foundation, impermeable to liquid, is under the pressure of a semi-infinite permeable. 
The material of the solid phase and the liquid are compressible. Using Laplace transformations with respect to time and the 
space coordinate, the problem is reduced to a Wiener-Hopf equation. The general features of the distribution of the roots of 
the characteristic equations, corresponding to different homogeneous conditions on the faces of the strip, are investigated. An 
effective solution is constructed in multiple integrals which converge exponentially with respect to all the variables. The temporal 
processes of the settling of the punch and the extrusion of the liquid are investigated. © 1999 Elsevier Science Ltd. All rights 
reserved. 

This is the basic problem of the method of piecewise-homogeneous solutions, which can be applied to 
problems on finite punches, cracks and inclusions in a rectangle, strip or plane. Since the consolidation 
equations are similar in form to those of associated thermoelasticity, the solution can be applied to the 
corresponding thermoelastic problems by recalculating the coefficients. 

There have not been many analytic solutions of the boundary-value problems of consolidation theory. 
The basic problems are analysed in [1-7], an approximate solution of the problem of the pressure of a 
punch on a half-plane saturated with an incompressible liquid is obtained in [8], and the problem of 
consolidation in a thin layer is solved in [9]. 

1. STATEMENT OF THE PROBLEM 

The process of consolidation of a two-phase linearly-deformable isotropic porous medium will be 
described by the Biot equations [1, 6] 

GAu* + G(1- 2v) -! grad div u* - H  i grad p* = 0 

a o ap* (1.1) 
kAp* = H 1 ~tt divu +(H 2 +/- /3)  at 

where u* is the vector of elastic displacements of the solid phase, p* is the pore pressure, t is the time, 
, 1 G is the shear modulus, v is Poisson s ratio, k is the filtration coefficient,/-/1 = 1 - c,/-/2 = (H1 - f )c~ ,  

113 = fc~ 1, c = ClC~ 1, Cl = ~G(1 + v)(1 - 2v) -1, f is the porosity, Cl, c2, c3 are the moduli of bulk 
compression of the skeleton, the homogeneous isotropic material of the solid phase and the liquid pore 
respectively, allowing for the gas dissolved in it. 

We will investigate plane deformation by writing the equilibrium equations on which system (1.1) is 
based 

3x +---~- = 0, 

= 0, o ,  
x - - '  

the generalized Hooke's law for the solid and liquid phases 

-fp* (1.2) 
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the Cauchy formulae 

( ") • , v u* -ntp (1 .3)  t~ x = 2G div + e x 
1 - 2 v  

( 1 " v d i v u * + e y - H t p * ,  u * = ( u x ,  uy) (1.4) t~,. = 2G 1 -  2v 

p* = Xl0 +x2d lvU , Xl =(H2 + H3) -1, ~2 = - H I ~ I  (1.5) 

Xxy = Ge*xy (1.6) 

ex=Ou*~IOx, e ; = O u y l O y ,  e x ~ = ~ u x l O y + ~ u ; l O x  

the Darcy--Gersevanov law 

v* = - k g r a d p , *  v* = f(v*~ - 0u*/0t),  v* = (v2,v>*) (1.7) 

and the equation of continuity 

divv* = - 0 0 " / 0 t ,  O * = H l d i V u * + ( H 2 + H 3 ) P *  (1.8) 

The velocity v* is equal to the rate of flow of the pore liquid which crosses unit cross-section are of 
the porous medium relative to the solid phase in unit time, v* is in the direction of the normal to the 
cross-section, v* is the true mean velocity of the liquid in Euler coordinates, and 0* is the change of  
the original volume of liquid in unit volume of the porous medium after deformation. The stresses a *  
and c~s are taken to mean the forces applied to a skeleton of unit area of the porous medium in the 
corresponding direction, the stresses in the skeleton are (1 _f ) - i  times greater. 

Applying to Eqs (1.1) a Laplace transformation with respect to time and a two-sided Laplace trans- 
formation with respect to the x coordinate 

f (bt )  = ~ f *  ( t)e-"tdt ,  
0 

= 

= . . o o  

, , ' ( t )  = I t'o )e)"a t 

:(x>= j 
. ,xi ta 

(1.9) 

where Lj is the straight line Re la = Zp Zj > 0 (j = 1, 2), we obtain (the symbol " is omitted below) 

Ux" + ots2ux + ([l + l)SUy - His p = 0 

oa~:+ s2uy + (~ + 1)su'~ - HIp '  = 0 (1.10) 

p "  + [s 2 - X(H 2 + H 3)]p - k/'/l (su x + u.~;) = 0 

= 2(1 - V)(1 - 2V) -l, 13 = 2V(1 - 2V) -l, 2L = p/C "l 

where Ux, uy andp are the transforms of the displacement vector and pressure and the prime represents 
the derivative with respect toy.  In accordance with the "closed system" principle, it is assumed that at 
the initial time t = 0 the liquid does not succeed in leaving the pores, and the initial condition has the 
form 0*(x, y, 0) - 0. 

We will write the transforms of the stresses 

• P t~ x = G(txsu x + ~iu.v ) - Hip,  t~y = G(~su x + tXUy) - H i p  
(1.11) 

x = G(u',, + su:.) 

Equations (1.2)-(1.7) lose their asterisks in the transformation, but do not change in any other way 
and will be applied below without further comment. Equation (1.8) becomes 

div v = --~0, 0 = H ! div u + (H 2 + 1-13) p (1.12) 
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The general solution of system (1.10) is 

2Gux = DI sin sy + D3(yrhs sin sy - rl 3 cos sy) + D52Gs sin qy - 
- D2 cos sy - D4(y'qls cos sy + 1"13 sin sy) - D62Gs cos qy 

2Guy = D1 cos sy + D3Yrlls cos sy+ D52G q cos qy + 
+ D2 sin sy + D4yrhs sin sy + D62Gq sin qy 

p = D3s cos sy + Ds~L112 sin qy + D 4 s  sin sy - D6~,1"12 cos qy (1.13) 

~ j= (~ i+ j ] r  I+HI ,  r I = ( H  2+H3)GH? 1, j = 1 , 2 , 3  

q2 = s2 _ 2Q.]4, H 4 = H 2 + H 3 + H ? ( o ~ G ) - I  

The constants D1, • • • ,  D6 in (1.13) are determined by the boundary conditions for y = 0, y = 1, 
which comprise the elasticity conditions in displacements and stresses for the skeleton and the seepage 
conditions in pressures and velocities for the pore liquid, as well as the derivatives of these quantities. 
These could be, for example, the contact conditions for the strip with punches, beams, stringers and 
Winkler or drainage layers. In the general case these sets of conditions are independent of one another 
and can be taken in different combinations, generating corresponding characteristic equations 
Nm(rt, s) = 0 for the eigenvalues Sk(ix) (k = 0, - 1, _ 2 . . . .  ), which possess a number of general properties. 

We will consider the problem of the pressure on a strip --oo < x, < oo, 0 ~< y ~< 1 of a semi-infinite 
permeable rigid punch x / >  0, y = 1 when there is no contact friction on either boundary y = 0 or 
y = 1. Assuming that the strip lies on a rigid impermeable foundation, we have the basic conditions 

y = 0 :  uy=O, x = 0 ,  ~play=O; y = l :  "~=0, p = 0  (1.14) 

and mixed boundary conditions 

y = l :  ( Iy=R(x, l~.) ,  x<0; u y = Q ( x ,  lL), x ~ O  (1.15) 

where R(x,  IX), Q(x, Ix) are transforms of the applied load R*(x,  t) and the settlement of the punch 
a*(x ,  t), respectively. 

By satisfying conditions (1.14), we can write (1.13) in the form 

2Gux = C(s)[rh'O2s cos q(y sin s sin sy + cos s cos sy) + 
+ ~,-12Gs cos s(q sin q cos sy - s sin s cos qy) - 11112 sin s cos q cos sy] 

(1.16) 
2Guy = C(s)['qlrl2s cos q(y sin s cos sy - cos s sin sy) - 

_;~-I 2Gsq cos s(sin q sin sy - sin s sin qy) - 112 sin s cos q sin sy] 

p = C(s)~2s sin s(cos q cos sy - cos s cos qy) 

where C(s) is an arbitrary function. 
We will satisfy conditions (1.15). Substituting expressions (1.16) into them, we obtain the two equations 

O'+(s) + O--(s) = --C(s)sNI(s)]2 
(1.17) 

u + (s) + u- (s) = -r l2G - IC(s )N 2 (s) 12 

where 

0 
(~+(8) =~ ~y(X ,  l)e-'~dx, o - ( s )  = ~ R(x)e-SXdx 

0 --** 
(1.18) 

0 
u+(s) = ~ Q(x)e-'~Xdx, u - ( s )  = S Uy(X, l)e-SXdx 

0 -0. 

The plus and minus superscripts are used to denote that the functions are analytic in the right and left 
half-planes, respectively. 

The characteristic functions of the homogeneous boundary-value problems (1.13)-(1.15) are given 
by the expressions 
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Nl(s) = Nz(g, s) = rhT12 cos q(2s + sin 2s) + 4G~,-Is cos s(q sin q cos s - s sin s cos q) 

N2(s) = N2(g, s) = sin 2 s cos q (1.19) 

Eliminating the function C(s) from (1.17), we obtain the Wiener -Hopf  equation 

o'+(s) + o--(s) = K(s)[u+(s) + u-(s)], s e L2 (1.20) 

K(s) - K(g, s) = G'q22sNI (s)N21 (S) 

2. ANALYSIS OF THE C H A R A C T E R I S T I C  F U N C T I O N S  

Theorem 1. I fs  = il3, 13 ¢ 0 is a pure imaginary parameter, all the roots of the characteristic equations 
Nm(~t, s) = 0 (m = 1, 2 , . . . )  lie on the ray Re g ~< 0, Im ~t = 0. 

Proof. Suppose Z = e + i8 is the value of the parameter g, s = il3 is a simple root of the equation 
Nm(Z, s) = O, u = u(f~, y,. z)e i~ is any component of the homogeneous solution. Then the real part u r 
and the imaginary part u' of the function u 

u r = u~(f ~, Y, 90 cos ~ix - ui([3, y, 90 sin 13x 

U i = u r ( ~ ,  y, ~) sin I~x + ui([3, y, ~) cos 13x (2.1) 

do not satisfy Eq. (1.12), which contains the complex parameter p = Z, and so are not solutions of 
the problem. However, they satisfy all the other equations and the homogeneous boundary 
conditions. 

We will now consider the integral over the boundary tgf~ of the rectangle ~ = {x, y: a ~< x ~< b, 
-1  ~ y  ~< 1} 

b 1 b I 
1-7 = - I  f r " ( x , - 1 )  d x +  I g'~(b,y)ay+I f rr(x, 1)dx- I g r r ( a , y ) d y  

a -I a -! 
f r r ( x ,  y)  = [C('Cru r + t~yUy)+kprt)p r IOy](x,  y, 9~) (2.2) 

g ' ~ ( x ,  y )  = [ c ( a ; u ~  + ":uy) + kprap ~ / a x l ( x ,  y ,  Z) 

where C is an arbitrary real constant, b = a + 2hi 3-~. 
By virtue of (2.1), gr~(b, y) = gr~(a, y) and therefore the second and fourth integrals of (2.2) cancel 

each other  out. The first and third integrals are equal to zero, since the functionsf(x, _ 1) are sums of  
products of  the real parts of the components of the homogeneous solution, vanishing on the boundaries 
y = _+ 1. Thus, L ~r = O. 

On the other hand, according to Green's formula 

( O Q  + o e 3  , , 

I k-fix -gy)aXay 
if we write L ~" in the form of a curvilinear integral over the closed contour ~t~, from (2.2) we have 

- F o x  r r r " ' r 
~ -~-yUy +t~y Oy "~-x ux -~x+-'~x uy -'~xJ + . r  r ,. +o'.,: r + , , :  r + , :   u,l+ 

(2.3) 

~ Gt Ot ~ 0t Q 0t Q 11 We now introduce the vector functions w = (ex, ey, 0 ,  ely), o = (ox oy p ,  x ), the components of 
ct 7 which are real or imaginary parts of the homogeneous solutmn. Let  thezr scalar products be ( o ,  w ), 

where the superscripts a and 3, can take the values r and i. Substituting (1.5) into (1.3) and (1.4), we 
obtain o ~ = A w  ¢', where A is a 4 x 4 square matrix, (aik} 
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all =a22 =2G(1-v) (1-2v)  -I -HlX 2, a12 =2Gv(I -2v)  -] - H i x  2 
(2.4) 

a13=a23=-Hl~l, a 3 3 - - - ~  1, a14=a24=aM=O, am=G, akimaik 

Since the matrix A is symmetrical (Aw a, w ~) = (w ~, Aw a) and, therefore, we have the "Betti 
formula" 

(o a, wV) = (w ~, or) (2.5) 

From (1.2) the terms in (2.3) with coefficients u r and u~ are zero in the sum while the terms with 
coefficient x r give x ~  in the sum. It follows from Eqs (1.7) and (1.12) thatprAp r = k-lpr(eff- ~ ) .  Thus 
L ~r can be put in the form 

L" g C(t~[, w;)+k +k-lpr(eo r -80  i) dxdy (2.6) 
CayJ 

r I ~  = ( o r  (~),,, ,~r), w~ = (e r, ey,' exy) 

Since the value of C is arbitrary and L rr = 0 ,  we have 

H (o~, w~)dxay = 0 (2.7) 
fl  

We put C = e. Then from (2.6) and the equation 

Co', w') = (o~, w~) + p'O' (2.8) 

it follows that 

{ ]} Iff=JJ E(ffr, wr)+k + - prOi dxdy (2.9) 

From (2.4) and (1.5) for any corresponding stresses and strains which do not vanish simultaneously, 
we have 

2 ((I, w) - -  al l  (e~ + e~) + 2al2exey + 2a13(e x + ey)O + a3302 + a44exy 

=2G(e2x +e~)+ 2Gv 1-"~v(ex +ey) 2 + xl[Hl(e x + ey)-- 0] 2 +Ge~ > 0 

Hence from (2.7) and (2.8) it follows that 

$I (or' w')dxdy > 0, S~ p'0"dxdy > 0 (2.10) 

Considering the integral L// and repeating the argument used for (2.2)-(2.10), we obtain the 
estimate 

IS piOidxdy > 0 
t'l 

Then, as in (2.9), we derive the equations 

Lri'~'II [ L ox ox ~Pr ~Pi ~'~prOr]} ~y 

L/r:sJ" ~pr 
t~ L ox ox ~y ~y piOi dxdy = 0 

Subtracting (2.13) from (2.12) and using formula (2.5), we obtain 

(2.11) 

(2.12) 

(2.13) 
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~ (prOr + piOi)dxdy = 0 

which, by virtue of  inequalities (2.10) and (2.11), is only possible when 8 = 0. Since U r = 0, k > 0 and 
8 = 0, it follows from (2.9) and (2.10) that e ~< 0; the equals sign applies when Opr/Ox = Opr/Oy - O. 

Suppose s -- il3 is an n-fold root of the equation Nm(X, s) = 0. Then the components of one of the 
n corresponding homogeneous solutions (the residual in the n-fold strip (1.9)) have the same form as 
before u = u( fhy ,  )~)e i[~ a n d  obviously are not simultaneously identically equal to zero as a function of 
y for s ~ 0. This case therefore reduces to that of a simple root, which proves the theorem. 

Corollary. 1. If la = e + i8, 8 # 0, the functions Nm(~t, s) have no pure imaginary zeros s = il3, 13 # 0. 

L e m m a  1. The function K(~t, s) is even in s. 

L e m m a  2. The function K(0) - K(~t, 0) has the following properties: 
(a) K(0) # 0 for any ~t = i8, 8 ~ 0; 
(b) K(0) > 0 for real ~t > 0. 

Proof. It is easy to see that 

K(0) = 4Grl~2(rllrl2 -G~.-lq ° thq°), q0 =,qUa4 

K(0 )~  2K0, ~ .~  0; K(O)~ 4G'ql~2 I, ~ ,~  

K 0 = 2Gq~ 2 ('qlrl2 - GH 4) = G(I - v) -I > 0; OK(O)/3~. > 0 

This proves the iemma. 

(2.14) 

L e m m a  3. For fixed ~t and as r ~ oo 

K(ir) = Ko r + iZ(r) + O(re-2~), ~(r) = O(r -t) 

Theorem 2. For complex values la = e + i8, 8 ~ 0, the index × of the function 

X2(s) = K(s) tg ~s (Xos) -j 

is equal to zero on the imaginary axis. 

(2.15) 

(2.16) 

Proof. By hypothesis, by virtue of Lemmas I and 2 and Corollary 1, the function K2(s) is continuous on 
the imaginary axis, is even, and has no zeros or poles. It follows that its index, in the sense of the principal 
Cauchy value, exists and is equal to zero. Taking into account the asymptotic form (2.15), we have 

In K2(ir) = r -l + i z ( r ) +  O(re-21rl), z(r)  = O(r-2), [ r I--') o~ 

arg g2(+i**) = lira Im In K2(ir) = lira [aretgz(r)r  -I ] = 0 
r ---I,:~,~* r--.-~:L~* 

Hence,  × = 0 in the usual sense also. 

3. C O N S T R U C T I O N  OF A S O L U T I O N  

We will construct a canonical solution of the homogeneous equation 

6~ (s) = K(s)uo (s), s ~ I a (3.1) 

By Lemma 3, Corollary 1 and Theorem 2, the function K(s) can be factorized in the familiar way 
[10]. Thus we obtain 

u~(s) = ~-~ _---~ [ - ~ / _ ~  (3.2) 
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r,,+s, oxpl_lT,n , r } 
o ~ ( s ) = g o  r ( l / 2 + s )  L 2gi_/** - ' 

The integral here, calculated as the principal Cauchy value, converges exponentially. The general 
solution of Eq. (1.20) can be written in the form suggested by Gakhov in [11]. 

We will construct a general solution for the case when there is zero applied load and Q(x, Ix) = -Q(I.t) 
in the simpler form of [12]. From (1.20) we have 

o+(s) = K(s)[u +(s) + u-(s)], u+(s) =-Q(~)s-:  (3.3) 

where Q(~t) is the transform of the given time-dependence of the settlement of the punch. 
From the condition for finite energy under the edge of the punch, %(x, 1) - Ax q', q~ > -1 asx ~ +0, we 

have G+(s) - AF(tp + 1)s --~-1 ass --> 0o [12]. Since G~'(s) = O(s 1/2) ass ~ oo, by Liouville s theorem we have 

o+(s) = O(~t)o~(s) Uo(0) = K0 
SUo(O ) ' g(o) (3.4) 

Thus, the solution of the problem is given by formulae (1.9) and (1.16), where 

C(s) = 2Q(I.t)Grl~ 2 u o (s) (3.5) 
su~(O)N2(s) 

We will show how a solution can be calculated effectively by performing the inverse transformations 
(1.9). Consider the pore pressure 

• 1 p (x, y, t) = ~ ~ p(x, y)e~t'd~t (3.6) 
1 Lt 

p(x, y) = ~ ~ C(s)rl2s sin s (cos q cos sy - cos s cos qy)e ~ ds 

I fx  > O, from (1.19) and (3.5) we can write the function p(x, y) in the form 

u 0 (s) (cos q cos sy - cos s cos qy) e.=ds (3.7) 
1 2GQ(I.t) ~ sinscosq 

p(x, y) = 2gi "q2u6(0) L2 

Allowing for the fact that the integrand is meromorphic and closing the contour of integration by a 
semi-circle in the left half-plane Re s ~< ~2, we expressp(x,y) in the form of a sum of series of the residues 
at the zeros of the functions sin s and cos q 

I 2GQ(g) 
p(x, y ) =  112//O(0) chq 0 ) c°sqn _1 

-** ( -  l)n uo (s n ) (nrc + It 12) cos s n cos (nTt + 7t / 2)y eS, X 
+ ~ ) (3.8) n=-I  '$n Sill Sn 

qn = 4  n2rt2-~'14,  s n =-~](nn+rc/2) 2 +EH 4, n = - 1 , - 2  .... 

We will consider two formulations of the problem: (a) when the punch is loaded instantaneously by 
a given quantity Q0 at the initial time; (b) when the punch is loaded in accordance with a time law which 
satisfies the conditions Q*(0) = 0, Q*(t) >I O, Q*(t) ~ Qo as t ~ 0o. Note that the instantaneous 
displacement of the punch by a given amount would in fact require infinitely large expenditures of energy, 
as one can see from the equations of the dynamic theory of consolidation. Then those equations of 
(1.1) which do not contain inertial terms would prevent us from obtaining a solution which gives an 
adequate description of the physical process as t ~ 0. 

In the first case Q(vt) = Q0~t -1, in the second case with the simplest time law Q*(t) = Q0(1 - e~) ,  
where the arbitrary parameter y > 0 is used to model the different loading programmes, Q(ta) = 
Qoy[~t(g + y)]-l. 
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We now consider the calculation ofp*(t) using (3.6), (3.8). Changing the order of integration with 
respect to IX and of summation of the series in (3.8), we consider the first of the series in (3.8). We close 
the contour of integration L1 on the left by a contour comprising a quarter-circle of large radius in the 
second quadrant, the contour L3 including the half-line Re IX = Xl, Im Ix = ~, ~ > 0 the straight-line 
segment Re Ix = Z~, -~ <~ Im Ix ~< ~, the half-line Re Ix ~< Xl, Im Ix = -~ and a quarter-circle in the third 
quadrant. The integrand has no singular points inside this close contour, and the integrals over the arcs 
of the circles of large radius tend to zero by virtue of Jordan's lemma. 

The singular points of the nth residue of the integrand in the left half-plane Re Ix ~< 0 can be divided 
into three groups. The first depends on the nature of the applied load and gives simple poles at the 
point Ix = 0 and Ix = -~' in this case. The second group are the zeros of cos qn, which for any n can be 
computed from the formula 

~'n,n =Tt2H4 l [ n2 - (m+l /2 )2 ] '  m = 0 , _ _ l , _ 2  .... 

Starting from some I m I > n, ~'nm < 0, since there are simple poles on the negative part of the real axis. 
The singular points of the third group depend on the coefficient [Uo(0)] -1 which, by (3.4) and (2.14), 
can be written in the form 

[Uo(0)] -t =2~/(1-v)q(~t),  W(i.t) = rll Gq°thq  ° 
r12 rl~X (3.9) 

2 -1 Here, on the negative part of the real axis, the radicand vanishes at the points IX~ = -tmkH4 
(m = 1, 2 . . . .  ), where tm are the roots of the equation 

Xt-  tg t = O, X = rhrl2(GH4) -1, X ~> ot ~> 2 (3.10) 

defined by the asymptotic form 

tra = ~n  - tr,/2 - 1/(xxm) + O(l[m 2) 

These are branch points of the given coefficient, and the corresponding cuts can be assumed to lie entirely 
on the negative semi-axis. 

Thus, in the left half-plane Re IX ~< 0 outside the ray Re IX ~< 0, Im IX = 0, the given function is analytic, 
and evaluation of the slowly converging integral over the contour La can be replaced by evaluation of 
the integral of an exponentially decaying function o n  L 3. 

For the second series of (3.8), it is extremely effective to evaluate the integrals term-by-term over 
the contour La: when k = ir rapid convergence is ensured by the factor e s~x, since 

s n = - ~ - .  (cos O. / 2 + i sin O n / 2), where p. = 4(ng + x / 2) 4 + r2H~ 

0,  =arctg[rH4(nrc+nl2) -2] and 0, ~ n / 2  as r---)** 

p*(x, y, t) and the other components of the solution are calculated in the same way. 

4. ANALYSIS OF THE S O L U T I O N  

Whenx  > 0,y = 1 and t ~ 0 we will investigate the behaviour of the function Op*/Oy which defines 
the flow rate of liquid through a permeable punch at the initial time. By (3.8) we have Op/Oy - Q(~t)ix 1/2 
on the boundaryy = 1 as IX ~ oo. It follows from an Abelian-type theorem that the velocity is infinite, 
Op*/Oy - t l/z, t ~ O, in the case of an instantaneous load and is equal to zero, Op*/Oy - t a/2' t --, O, for 
an exponential load. 

We will determine the normal-stress intensity factor at the edge of the punch as a function of time. 
From (3.2) and (3.4) we obtain 

O+(s) - -Q( l . t )~0K(0)s  -~  as s ---) .o 

Hence, using the relation between the asymptotic forms of the original and the transform, we obtain 

a.vs(x, 1) - -Q(~)~ooK(O) (nx) -½ as x --~ +0 
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The normal stresses at the edge of the punch behave with time as given by the expression (k = 1, 3) 

, ~ 2~r2G I j Q(gt)~f~(gt)e~tdgt (4.1) (yy~(X,l,t)- ' K1(t)= ~ 2~i 4 

It can be verified that V(Ix) --) [2(1 - v)] -1 as Ix -~ 0 and, therefore, as t --> oo, according to (4.1), for 
k = 1 we have 

KI 2GQo 
O;..,.(x,l)~ 2 - ~  ~ ,  K , =  l - v  

which is the same as the asymptotic form of the contact stresses at the edge of the punch in the theory 
of elasticity corresponding to the problem of consolidation as t ~ oo. 

Figure 1 shows graphs of the change with time of the stress intensity factors (4.1) for G = 1000, 
v = 1/3, c2 = oo (an incompressible skeletal material) with an instantaneous load for three values of 
the parameter 11 (the left-hand side and the bottom part of Fig. 1) and with an exponential load for 
three values of the parameter 1' and 1] = 0 (the top right-hand of Fig. 1); t, = kt[G] is a dimensionless 
quantity, [G] is the dimension of G, the unit of length is the strip thickness and K, - K1(t,)/K1. In the 
first problem the behaviour of the function ~s(x, 1, t) as x ~ 0 for small t is given by the asymptotic 
formula 

O(,s(x, 1, t ) KI ° K o 2"~GQ--o 
• - = -  1-Trr7--  

which gives the same values of Kl(0) as the graphs on the left and bottom of Fig. 1. Comparing the 
numerical values of the function Kl(t) in the figure for 1] = 0 and 7 = 100 we see that they agree to 
three significant figures, even when t. = 1.7 x 10 -7. This justifies using the simpler problem of an 
instantaneous displacement of the punch, in spite of the infinitely large flow velocity of the liquid as 
t ---~ 0. 

Suppose the punch is pressed into the strip under a uniformly distributed load of intensity cs~(t). Then 
asx --) oo the contact stresses take the value cs~(x, 1, t) = - ~ ( t ) ,  from which we can find the law of the 
loading of the punch over time Q~(t). In fact, calculating the residue in the strip s = 0, from (1.9), (1.11), 
(1.16), (3.5) and (3.9) we obtain 

Gy(x, l, l.t) = 4GQo(I.t)W(~), Qo(l.t) = [4Gw(~t)]-ICo(ILt) 

If, in particular, the load is independent of time, G~(t) = c0 then Q0(ix) = [4G~v(P)]-Io0 • Hence 
from (1.9), summing the residues in the roots of Eq. (3.10), we obtain a formula for the settlement of 
the punch 

1.15 i ~ ~  

1. fO 

f, O5 

f" O01 ~-! 

~=U / - - ~ / ~  
: /.0 y--IO~ 

0 . 5  ~ ~  r ~ . ~  
0-~ I, p-7 ¢/j - s  

I. 
10 -2 I0 "g fO-* f.SxlO -~ 2.0xfO -4 t,~ 

Fig. 1. 
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r 
• _ o0  / 

n ,  m=l Z 2 t 2 m + l - z  J (4.2) 
1. 

The total sett lement s • Uy is equal to 

lira uy(1, t) = - a 0 ( l  - v ) ( 2 G )  -I 
t - - 1 , ~  

When t = 0 the sum of  the series in (4.2) is 

2 2  = =l X tm + l -  X 2Z( Z -  1) 

from which we find the initial settlement 

. • G 0 112 °=hmuv(l,t)= , I"12 ~>'ql ~> 1 
uy t~0 " 4G ~I 

If the skeletal material and pore liquid are incompressible, then ~2 = Tlx = 1, u°/uSy = [2(1 - v)] -x. 
If the skeleton itself is incompressible (v ---> i/2), u ° = u~, the punch is immediately totally immersed. 

We will now estimate the flow velocity of the liquid at the initial time. As x -> oo we have 

v ,*(x, 1, t) = - k  ~p* ° °  H ~ a k  t - ~ ,  t ---¢ 0 
" /)Y 2 ~ "  n, 

If the skeletal material and the pore liquid are incompressible, then as x ~ 

• ~ 0 - ~ -  2v)k t- • 
Vy(X,l,t)- 2"J2-x~ , t---->O 

• depends on y, but It can also be verified that asx ~ ~ ~p*/& = 0, z* = 0; Ox 

I 
o* dy = o 

o 

Note that asx ---> ~ and t ~ 0 we havep* (x, O, t) ---> o0(2~h) -t, that is, for incompressible skeletal 
material and pore liquidp* (x, 0, t) ---> o0/2. 
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